الغزقة المراقعة نعف العالم عن

Menoufia University

Faculty of Electronic Engineering

Computer Science and Eng. Dept.

Academic Year: 2022 / 2023

4th Year - 1st Semester

Final Exam

Course: Elective Course 5 (CSE416)

Exam Date: 12/1/2023

Exam Time: 10:00 AM to 01:00 PM

Exam Code: FECV22

Answer the following questions:

Total marks [70]

First question (Choose the correct answer): [50 marks] Calculator is allowed.

- 1. Which of the following corresponds to labelling each pixel according to the object it belongs to:
 - (a) Image classification.
 - (b) Semantic segmentation.
 - (c) Object detection.
 - (d) Optical Flow.

- **Note:** Fill in the table shown on **Page** 9 with the correct answers to the first and second questions.
- 2. Which of the following is true for Eigenfaces (PCA)
 - (a) Is invariant to geometric transforms.
 - (b) Is invariant to shadows.
 - (c) Can be used to effectively detect deformable objects.
 - (d) Can be used for lossy image compression.
- 3.learns a function to classify arbitrary 3D points as inside / outside the shape.
 - (a) Point cloud.
 - (b) Implicit surface.
 - (c) Volumetric.
 - (d) RGB-D image.
- 4. Which of the following is considered a generative approach to handle classification problems:
 - (a) Principal Component Analysis.
 - (b) Adaboost.
 - (c) Support Vector Machines.
 - (d) (c) and (b).
- 5. Data pre-processing include the following
 - (a) centring.
 - (b) whitening.
 - (c) standardizing.
 - (d) All of the above.
- 6. A robust binary classifier is tested on an image of a novel category, the values of the output probability vector should be

(a) [0.0, 1.0]
(b) [0.5, 0.5]
(c) [1.0, 0.0]
(d) [1.0, 1.0]
7. Object detection can be considered a problem.
(a) classification
(b) regression
(c) classification and regression
(d) None of the above
8. The discriminative technique focuses on to handle the classification
task.
(a) learning decision boundaries
(b) building a model for each class
(c) class scalability
(d) None of the above
9. When applying a Hough transform, noise can be countered by:
(a) decreasing the threshold on the number of votes a valid model has to obtain.
(b) considering only a random subset of the points since these might be inliers.
(c) a finer discretization of the accumulator.
(d) increasing the threshold on the number of votes a valid model has to obtain.
10. Which of the following can be considered a machine learning problem:
(a) Computing the factorial of non-negative integer numbers.
(b) Diagnosing new human disease that has not shown yet.
(c) Recommending new movies based on the interest of a Netflix subscriber.
(d) None of the above.
11. Suppose we are using a Hough transform to do line fitting, but we notice that our
system is detecting two lines where there is actually one in some example image.
Which of the following is most likely to alleviate this problem?
(a) Make the image larger.
(b) Sharpen the image.
(c) Increase the size of the bins in the Hough transform.
(d) Decrease the size of the bins in the Hough transform.
12. The purpose of PCA algorithm is the following
(a) Visualization
(b) Noise removal
(c) Regression
(d) All of them 13. Which of the following is considered a variant of semantic segmentation:
(a) Pose estimation.
(b) Panoptic segmentation.

(c) Semantic image synthesis.
(d) (a) and (b)
14is the ability to easily generate realistic random image.
(a) Image classification
(b) Semantic segmentation
(c) Image synthesis
(d) Pose estimation 15. Which of the following is true about Transformers on images:
(a) Require large amount of annotated data compared to CNNs.
(b) Their fundamental component is self-attention.
(c) Are faster than RNNs in training and inference.
(d) All of them.
16. The pixel dimension of depth image is
(a) 1
(b) 2
(c) 3
(d) 4
17. When U-Net is trained on images, the expected output type is
(a) category label.
(b) image.
(c) Float number.
(d) text.
18is sensitive to outliers.
(a) Least square fit
(b) RANSAC
(c) Hough transform
(d) (b) and (c)
19. Which of the following is considered a mid-level vision:
(a) Panorama Stitching.
(b) Image Adjustments.
(c) Edge detection.
(d) All of the above.
20. Which of the following is considered distance metric:
(a) Cross-entropy measure.
(b) Euclidean measure.
(c) Mahalanobis measure.
(d) (b) and (c).
21 is considered as an unsupervised learning loss function.
(a) Cross-entropy
(b) Triplet loss

	(c) L2 loss		
	(d) All of the above		
22	. Which of the following is considered a single-stage object detector net	work:	
	(a) YOLO.		
	(b) Fast R-CNN.		
	(c) Faster R-CNN.		
	(d) U-Net.		
23	. NMS algorithm is used for		
	(a) proposing a number of plausible rectangular regions.		
	(b) removing weaker detections that have too much overlap with stro detections.	nger	
	(c) classifying each detection while also producing a confidence score		
	(d) Measuring the accuracy of each bounding box.		
24	is about logic planning and proving, such as forming beliefs,	making	
	decisions.		
	(a) Cognition		
	(b) Perception		
	(c) Machine learning		
	(d) Hough transform		
25	find likely images based on keywords.		
	(a) Visual similarity search		
	(b) Instance retrieval		
	(c) Image search		
	(d) Instance recognition		
Se	cond question (True (T) or False (F)): [8 marks]		
1.	Hough transform is computationally efficient.	()
2.	PCA is a linear unsupervised machine learning algorithm.	()
3.	VAE consists of a discriminator and generator networks to synthesize image	ages.()
4.	Automatic medical diagnosis usually relies on symmetric cost evaluation classification model.	of the ()
5.	K-nearest neighbors can be used for both classification and regression.	()
6.	Generative approach is suitable for handling scalable classification proble	ems.()
7.	In feature-based recognition, it is preferable to get the interest points (ke	evpoints)	that
	lie on edges.	()
8.	In computer vision, we can rely on physics and probabilistic models to ov	ercome t	the
	missing information.	()

11	iira question:		
1.	Explain the main pr	operties of keypoint descriptors.	
2.	What are the prope	ties that computer vision algorithms should satisfy?	
		ties that computer vision algorithms should satisfy?	

3. Given a collection of 3 images { $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ \mathbf{x}^{(3)}$ } in \mathbb{R}^2 , where

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1.0 \\ 1.2 \end{bmatrix}$$

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1.0 \\ 1.2 \end{bmatrix}$$
 $\mathbf{x}^{(2)} = \begin{bmatrix} 2.0 \\ 1.8 \end{bmatrix}$ $\mathbf{x}^{(3)} = \begin{bmatrix} 3.0 \\ 3.0 \end{bmatrix}$

$$\mathbf{x}^{(3)} = \begin{bmatrix} 3.0 \\ 3.0 \end{bmatrix}$$

The eigen values and eigen vectors of the estimated covariance of the given data are the following:

$$\lambda_1 = 0.017$$
, $\lambda_2 = 1.82$ $\nu_1 = \begin{bmatrix} 0.7 \\ -0.71 \end{bmatrix}$, $\nu_2 = \begin{bmatrix} -0.7 \\ -0.7 \end{bmatrix}$

Answer the following:

- a) Calculate the data mean
- b) Let's suppose the encoding function $f(\mathbf{x}^{(i)}) = z^{(i)}$ is used to project each data sample onto a line that best fits the given data using PCA algorithm, calculate the values of $z^{(3)}$
- c) Calculate the reconstructed image $\tilde{\mathbf{x}}^{(3)}$
- d) Calculate DIFS₃
- e) Calculate DFFS₃

1:

Answer to the first question:

-

14.	
15.	
16.	
17.	
18.	
19.	
20.	
21.	
22.	
23.	
24.	
25.	
	Note that the second se

<u>Answer to the second question</u> (Write 'T' for True and 'F' for False):

the state of the s	
1.	
2.	
3.	
4.	
5.	
6.	, , , , , , , , , , , , , , , , , , , ,
7.	
8.	

الفرقة الرابطة بعث العامىء

University : Menoufia

Faculty : Electronic Engineering Department : Computer Science&Eng.

Academic level: 4th Year

Course Name : Distributed Systems

Course Code : : CSE 468

Date 5/01/2023 Time : 3 Hours

No. of pages: 2

Full Mark: 70 Marks Exam : Final Exam Examiner : Assoc. Prof: Nirmeen

A. El-Bahnasawy

Answer the following questions:

Question No. 1:

(30 Marks)

- a) What are the four benefits of using cloud computing?
- b) Explain different models for deployment in cloud computing?
- c) State the difference between allocation problem and scheduling problem.
- d) Give only three IoT ENVIRONMENTAL MONITORING applications.
- e) State the Fog Computing Architecture?
- f) Give a block diagram explains How IoT model works

Question No 2:

(20 Marks) ·

a) Give the Gantt chart of a schedule for the sample task graph of Figure 1 on three homogeneous processors. Calculate speedup and efficiency parameters.

Fig. 1

b) Program for x = a * 7 + (a * 5 + 2) As a DAG and get Gantt chart onto 2 processors. Take unit of time is unity and no communication cost.

Question No 3:

(10 Marks)

State is the main concept of the following topics:

1. First Come First Serve algorithm.

- 2. Max-min algorithm.
- 3. Virtualization.
- 4. Challenges of big data in cloud computing.
- 5. IoT Disadvantages.

Question No 4:

Choose the correct answer:

(10 Marks)

- 1. Tasks carry out independently. This refers to (concurrency no global clock)?
- 2. Interfaces should allow components to be added or replaced. (Openness scalability)?
- 3. Protection against disclosure to unauthorized individual. (Confidentiality integrity)?
- 4. Enables local and remote resources to be accessed using identical operations. (Concurrency transparency Access transparency)?
- 5. It is closer proximity to small end users, its wider consumer reach, and better mobility. Refers to (Edge computing Fog computing)?
- 6. Communication delay between two tasks allocated to the same processors is (negligible idle time)?
- 7. Systems enhanced data collection (IoT Foggy)?
- 8. The extension or lowering of cloud computing capabilities to the bottom/edge of the network in order to provide faster ICT (communication, storage, software, etc.) services to the lower end users.(edge computing fog computing)?
- 9. Is being one of the characteristic provide the concept of commissioning and decommissioning of large amount of resource capacity dynamically. (Scalability elasticity)?
- 10. Service provides cloud applications which are used by the user directly without installing anything on the system. The application remains on the cloud and it can be saved and edited in there only. ((SaaS) (IaaS))?

Best Wishes

a cottelice authory

University : Menoufia

Faculty : Electronic Engineering
Department : Computer Science

Department : Computer Engineering

Academic Level : 4th Year

Course Name : Advanced Database

Course Code : CSE 414 Academic Year : 2022/2023

Semester : 1st

Date : 9/01/2023
Exam : Final Exam
Examiner : Dr. Ahmed
Shehata

No. of Questions: 5
Full Mark : 90
No. of pages : 2
Start Time : 10 AM

Exam Duration:

Answer all the following questions:

Question No 1:

[8 Marks]

3 Hours

Based on the given primary key of the following relation, Is this relation in 1NF, 2NF or 3NF? Why or why not? How would you successively normalize it completely?

Question No 2:

[20 Marks]

a) What is the purpose of database recovery?

[5 M]

b) Differentiate between: Immediate Update and Deferred Update according to transaction status (executed, on commit and when rolled back). [5 M]

c) Discuss the operation of deferred update recovery technique concurrent users environments.

[5 M]

d) Apply and explain the update recovery transaction process on the following timeline transactions using immediate update technique. [5 M]

Question No 3:

[20 Marks]

- a. What are the types of threats to databases? And what are the kinds of countermeasures that can be implemented to protect databases against these types of threats? [8 M]
- b. Compare between discretionary and mandatory security mechanisms.

[8 M]

c. Explain the two restrictions are enforced on data access based on the subject/object in Mandatory Access Control

Question No 4:	[22 Marks]
a. State the main steps of the ARIES Recovery Algorithm	[6 M]
b. Consider the content of the following undo log	[8 M]

LSN1	<start t1=""></start>
LSN2	<t1 5="" x=""></t1>
LSN3	<start t2=""></start>
LSN4	<t1 7="" y=""></t1>
LSN5	<t2 9="" x=""></t2>
LSN6	<start t3=""></start>
LSN7	<t3 11="" z=""></t3>
LSN8	<commit t1=""></commit>
LSN9	<start ckpt(t2,t3)=""></start>
LSN10	<t2 13="" x=""></t2>
LSN11	<t3 15="" y=""></t3>
	*C*R*A*S*H*

- 1. Show how far back in the recovery manager needs to read the log. Write below the earliest LSN that the recovery manager reads.
- 2. Show below the values of variables and actions of the recovery manager during recovery:
- 3. What is the value of X at the end of the recovery
- c. After a system crash, the redo-log using non-quiescent checkpointing contains the following data:

```
< START T1 >
< T1, A, 10 >
< START T2 >
< T2, B, 5 >
< T1, C, 7 >
< START T3 >
< T3, D, 12 >
< COMMIT T1 >
< START CKPT ???? >
< START CKPT ???? >
< START T4 >
< T2, E, 5 >
< COMMIT T2 >
< T3, F, 1 >
< T4, G, 15 >
< END CKPT >
< COMMIT T3 >
< START T5 >
< T5, H, 3 >
< START CKPT ???? >
< START T5 >
< T5, H, 3 >
< START CKPT ???? >
< START T5 >
< START T5 >
< START T5 >
< START CKPT ???? >
< COMMIT T5 >
```

- 1. What are the correct values of the two <START CKPT ????> records? You have to provide two correct values for the two ????s.
- 2. Indicate and explain what fragment of the log the recovery manager needs to read.
- 3. Assuming that the two < START CKPT ???? > records are correctly stored in the log, according to your answer above, show which elements are recovered by the redo recovery manager and compute their values after recovery.

Ques	tion No 5:	[20 Marks]
a.	Draw the diagram of Knowledge Discovery (KDD) process.	[4 M]
b.	State the main tasks in Data Preprocessing?	[4 M]
C.	How to handle missing data?	[4 M]
d.	Use min-max normalization method by setting min=1 and max=10 to normalize the for	ollowing
	values: 200, 250, 10, 40	[4 M]
e.	What is the main steps to assure Data Quality?	[4 M]

كلية الهندسة الإلكترونية قسم هندسة وعلوم الحاسبات

|Page1

Fall 2022 Final Exam Digital Multimedia

Total 70 marks Time: 180 min Examiner: Prof. Mohamed Abdou Berbar.

Q1(28)	Q2 (18)	Q3 (24)	Total (70)
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

Answer all the following

Qu	estion 1:		
Whi	ch of the following statements is False and which is True:[28 Marks]		
1)	The decoder has to know the Huffman code table as used for enco	ding	g,
eith	ner by default values or by explicit transmission of those table.	[]
2)	For any particular coding scheme, encoding and decoding algorith	ms \	will
hav	ve the same run time.]
3)	Lossless, or entropy, compression does not ignore the semantics		
(me	eaning) of the data.	[]
4)	Lossy compression is based purely on the statistics of the symbols	in t	the
dat	ta.	[]
5)	Run-length encoding (RLE) is considered as Statistical Compressi	on.	
		[]
6)	Sampling – restrict the value to a fixed set of levels.	[]
7)	Quantization -measure the value at discrete intervals.	[]
8)	Range of human hearing: roughly 20kHz-40kHz	[]
9)	Oversampling:		
Sa	mples 'too far apart' so cannot accurately reconstruct original signal.]
10)	Each time lossy compression applied, size of date decreases and	qua	lity
of l	level of the file increases	[]
11)	Higher sampling rate and the larger the sample size, the more account	urat	ely
SOI	und can be digitized.]

12)	There is no guarantee that encoding and decoding algorithms will	ll have	9
the	e same run time.	[]
13)	For some applications, symmetric coding is necessary, while for	others	3
one	e end (typically the encoder) can be allowed to take significantly mo	re tim	ie.
		[]
14)	In symmetric applications, the hardware and the available proces	sing t	time
is u	usually also symmetric, while for asymmetric applications one end m	nay ha	ave
mu	ch faster hardware and/or more time.	[]
15)	Pulse-code modulation (PCM) is a method used to digitally repres	sent	
sar	npled analog signals.]
16)	Any periodic waveform can be decomposed into a collection of from	equer	тсу
con	mponents]
17)	Sampling rate is the number of times per second that samples are	e take	en;
land.	I		
18)	Bit-depth determines the number of possible digital values that ea	ach	
san	nple can take.	[]
19)	Analog-to-Digital Converter (ADC) captures a snapshot of the ele	ctric	
volt	age on an audio line and represents it as a digital number that can	be se	nt
to a	computer.]	
20)	The decoder has to know the LZW code table that used for encoder	ling b	У
exp	licit transmission of those tables.]]
21)	In JPEG, after discrete çosine transform (DCT), The AC 64 value	s are	
read	d as a linear sequence using a default zig-zag-order.]	
22)	In MPEG-1, B-frames are encoded with respect to previously encoded	oded	l-
or F	P-frames.	[]
23)	The decoding part of the JPEG baseline algorithm is a sequence	of	
ope	rations, starting with "+128" (at all 64 pixels), followed by DCT and		
sub	sequent quantization (using a quantization table), and further follow	ed by	
Huff	fman coding (using a Huffman code table).[

24)	In JPEG, the decoder has to know the quantization table and	d the	Huffman	
cod	e table as used for encoding, either by default values or by ex	plicit		
tran	smission of those tables []			
25)	In MPEG-1, the luminance channel is retained, but the chron	mina	nce	
cha	nnels are sub-sampled 2:1 in both coordinate directions.			
lange]			
26)	I-frames are encoded like still images (e.g., using for ex. the	e JPE	EG	
bas	eline algorithm).	[]	
27)	In JPEG, there are I-frames, P-frames, and B-frames. []			
28)	In MPEG-1, P-frames are encoded with respect to previous	y en	coded I-	
or F	P-frames.]	

Question 2

(a) Given the following frequency table (Table 1), do the following:

1									1
Alphabet	Н	G	F	E	D	С	В	Α	
Frequency	90	40	100	80	320	160	200	360	

I. Draw Huffman tree

[2 Marks]

II. Find Huffman Codes (code1)

[2 Marks]

III. Find average length of coded character [2 Marks]

Solution

Code1 Average length =

Code2 Average length =

Code 1 is better in Code 2 is better in

(b) Apply Dictionary based compression algorithm to decompress (decode) the following code [1 - 2 - 3 - 2 - 5 - 4 - 6 - 11 - 1] assuming that compressed alphabet consisting of 4 symbols (S1, S2, S3, S4). [4 marks]

(c) In MPEG, why	AC-coefficients of B and I	rames are	usually very la	arge
values, whereas	those of I frame are very s	small?	[2 Marks]	
	Answer:			
		and this see that the still the see that the see the see the see the see	DE SANT SHIP	
		price your good halfs offer their good hard part poet most good south film sittle good lays th	D. See see spr	
		and life the line line line line rise and that spir term like line with the lens to	as had then man	
		gaar neer filtr hall, meer hand hijde stell neer gann gaal, jills hore date agen stast trock hij	IN your GPT Mic-	
		pero agus julio Prio, pero ago agli gigo han non anni gillo terr nino anno gigo tero. A	to and side time	
		and then have been said then tree have still have more more than their been said their said have	of the last had	
	00 400 may be \$10° yet an An An and \$100 may be \$100 m	per and then been been been seen to the term to the te	14 SQ PR 164	
		water fright game water states that their latter hand water hand game place game states and		
4	10 700 mag and 100 150 mile and 100 mag also and 100 pin over mag and mine mag also pin on the 100 pin mag and 400 pin one over 400 pin mag and 400 pin one over 400 pin mag and 400 pin one to 100 pin mag and 400	uay तरेंग 104 144 बार्ज प्रह्म प्रह्म करने करन प्रह्म देवन तरात अबस्य तरेंगा स्थाप अस्ति स्थाप	n, oth and 1600	
(d) It is required to	store a 24-bit true colo	ur (with spa	tial resolution	
1024 x 768) ui	ncompressed video of 3-ho	ours duration	on the hard dis	sk.
What is the sto	rage size of that video?	Assuming you	applied samp	ling
4:1:1 and applyi	ng a compression techniqu	e with (1:26)	compression r	ate.
What is the sto	rage size of that video?	[2 Marks	3]	
Answer:				

con not too help this star and apply the sco seek ush side now you gift the sou was				
the seal like will not see any life the see who has not you see that the see has been been for the life the life.	00 and bed 000 and wall from his war also 000 000 high size one part plat from size out and not one tout plat (000 tous one one of 100 his one tout			
wall half this state what high this was may rely arts more hand after this right from which				

(e) In MPE	G-1, There are differe	ent search strategies used in MPEG-1 for					
detecting matching macroblocks. Does the decoder require that the used search							
strategy is known	? [2 Marks]						
i. no	ii. Yes	iii. at least for the intensity					
channel							
iv. at least for one	of the three channels	s, no matter-whether intensity or chroma					
channels							
Answer.							
was many philip flows some stopy stage alone waste, steps, assess good stops, asses p	TO BOOK SEEL THAT SEED SAND BOOK SEEL THAN THEN HAD SEEL THAN HAVE SEEL SAND SAND BOOK SHEEL SEEL SEEL SEEL SAND BOOK SEEL SEEL SAND BOOK SEEL SEEL SAND BOOK SEEL SEEL SAND BOOK SEEL SAN	y giện non trên sam hợi lớn linh dan you (rin thir) dan han lật.					

- (f) In MPEG-1, A macroblock in this coding scheme is defined by i. one 8 _ 8 block in the intensity channel, and two 8 _ 8 blocks in the two chroma channels.
- ii. four 8 _ 8 blocks in the intensity channel, and four 8 _ 8 blocks in the two chroma channels.
- iii. four 8 _ 8 blocks in the intensity channel, and two 8 _ 8 blocks in the two chroma channels.
- iv. four 8 _ 8 blocks in the intensity channel, and eight 8 _ 8 blocks in the two chroma channels. [2 Marks]

Question 3

(a) Explain the interleaving and error correction scheme (CIRC) Cross Interleave Reed-Solomon Code used in audio CD encoding. You can use the following example: CD-DA data is considered to be in two stereo channels sampled at 44.1kHz at 16 bits/sample. The samples from each channel are arranged in alternating order (left 16 bits, right 16 bits, etc.) to yield 32-bit sampling periods. [3 Marks]

b) If the display order of the flowing video frames as shown below, **show** how the transmission order should be.

[4 Marks]

Display order

Answer:

[c] What we should be concerned with the compression algorithm characteristics. [3 Marks]

Answer:

[d] Write an algorithm that performs simple, lossy DPCM coding on sampled audio. For samples of people speaking. For the DCPM examples, can you gain any additional compression by applying run-length coding to the output of the DPCM coder? Why or why not? [3 Marks]

[e] Write an algorithm that performs run-length coding on images. Use the image in the following figure for processing purposes, What percent compression do you get.

[3 Marks]

[f] Explain the characteristics of following: [3 Marks]

Frequency Masking - Temporal masking

Menoufia University
Faculty of Electronic Engineering
Computer Science & Engineering
Department

Network Security (4th year) Exam Date: Sunday Jan 2, 2023 Exam Duration: 3 hours

Final Exam (2022/2023 – 1st Semester)

Instructions

- 1-Write your name in the outside cover page only (do not provide any identity information in this booklet).
- 2- Make sure that there are 6 questions in this 6 pages booklet (cover pages are not counted). Use your time wisely.
- 3-Answer all the questions here in this booklet. Do not use any other external papers.
- 4-Points of each question are equally divided unless otherwise mentioned.

			Marking Scl	heme			
Q1/10	Q2 /16	Q3 /12	Q4/16	Q5/16	Q6/20	Total	/ 90
01: Defin	ne					[10 poin	ts]

- a. Replay attack.
- b. Strict Avalanche Criterion.
- c. Bit Independence Criterion.
- d. Polyalphabetic cipher.
- e. Masquerading.

Q2: Select the	correct	answer
----------------	---------	--------

[16 points]

Q2. Select the C	Office answer		[10 hours]				
1. In public cryptosystems, the sender of the message usesto create cipher text:							
(b) Own private k	(b) Receiver's pr	ivate key (c) Re	ceiver's public key				
2. Euler's totient f	function Φ (8 * 7) is						
a) 4 *6	b) 7 * 6	c) 7 * 3	d) 7 * 4				
3. The final output	of DES is						
a) IP (R ₁₆ L ₁₆)	b) IP (L ₁₆ R ₁₆)	c) IP^{-1} ($R_{16} \parallel L_{16}$)	d) $IP^{-1}(L_{16} R_{16})$				
4. The matrix used	in Play Fair encryption is of si	ze					
a) 4×8	b) 5×5	c) 8×8	d) 5×8				
5. The input to the	DES is						
a) IP ($R_0 \parallel L_0$)	b) IP (L ₀ R ₀)	c) IP^{-1} ($R_0 L_0$)	d) IP^{-1} ($L_0 \parallel R_0$)				
6. The minimum m	number of cryptographic keys	in 3DES required to acl	nieve a higher level of				
security than DES	is:						
a) 1	b) 2	c) 3	d) 4				
7. Which is the larg	gest disadvantage of the asymn	netric Encryption?	a) Complex and time-				
consuming.	b) Problem of the transmiss	ion of the Secret Key.	c) Less secure				
encryption function	on.						
& In the DES algor	rithm the Round Input is 32 bit	s which is expanded to	48 bits via a) Scaling o				
	b) Duplication of the existing						
the existing bits	ni Duniication of the existi	ng pins c) addition	OI OHES.				

Q3: True or False.

[12 points]

1. Eavesdropping is the network attack that floods the network with useless traffic.	
2. Symmetric key cryptography needs a mechanism for key distribution.	
3. Brute force attack can be used to break RSA.	
4. The input block length in DES is 128 bits.	
5. Symmetric key is also called a Secret key.	
6. All Stream ciphers are unbreakable.	
7.RSA depends on a two-way function that is easy to go in both directions.	
8. Public Key cryptography is limited to key exchange	
9. The number of tests required to break the 3DES algorithm are 2 ¹¹³	
10. When used together, a secret key scheme is used for session keys encryption and a	
public key scheme is used for messages encryption.	
11. In RSA, the values of e and d must be inverse multiplicative with respect to n.	
12. Symmetric encryptions cannot be used for Digital signature.	

a- Use the **fast exponentiation algorithm** to find the result of $11^{17} \mod 4$.

b- Encrypt "I love this course" with "Double Rail-Fence" with key = 2.(hint: encrypt twice with key =2)

c- How can we get the 48 bits of the key that are used as the cipher key if the original key is 64 bits?

d -What are the weakness and strengths of DES?

a-In RSA, if we can easy factoring n, the security of the algorithm could be compromised.

b- Even though anonymity could be seen as the opposite of accountability, both are goals of security.

c- Two popular choices of the value e in RSA are e=3 and e=17.

d- In RSA, Φ (n)=(p-1)(q-1).

Q6: Critical Thinking.

[20 points]

a- Assume DES with a key length of 56 bits is used for encryption, how much time is required for a brute-force attack to break the cipher if the machine is performing one DES decryption per microsecond?

Menoufia University
Faculty of Electronic Engineering
Computer Science & Engineering
Department

Network Security (4th year) Exam Date: Sunday Jan 2, 2023 Exam Duration: 3 hours

Final Exam (2022/2023 – 1st Semester)

Instructions

1-Write your name in the outside cover page only (do not provide any identity information in this booklet).

2- Make sure that there are 6 questions in this 6 pages booklet (cover pages are not

counted). Use your time wisely.

3-Answer all the questions here in this booklet. Do not use any other external papers.

4-Points of each question are equally divided unless otherwise mentioned.

			Marking So	cheme		
Q1 /10	Q2 /16	Q3 /12	Q4/16	Q5/16	Q6/20	Total /90
01: Defi	ma					[10 points]

- a. Replay attack.
- b. Strict Avalanche Criterion.
- c. Bit Independence Criterion.
- d. Polyalphabetic cipher.
- e. Masquerading.

Q2:	Select	the	correct	answer
-----	--------	-----	---------	--------

Q2: Select the correct answer [16 points]					
1. In public cryptosystem	is, the sender of the me	essage usesto c	reate cipher text:		
(b) Own private key (c) Receiver's public			eiver's public key		
2. Euler's totient function	n Φ (8 * 7) is				
a) 4 *6 b) 7 * 6		c) 7 * 3	d) 7 * 4		
3. The final output of DES	Sis				
a) IP (R ₁₆ L ₁₆)	b) IP (L ₁₆ R ₁₆)	c) IP-1 (R ₁₆ L ₁₆)	d) IP-1 (L ₁₆ R ₁₆)	
4. The matrix used in Play	Fair encryption is of s	size			
a) 4×8	b) 5×5	c) 8×8	d) 5×8		
5. The input to the DES is					
a) IP (R ₀ L ₀)	b) IP $(L_0 \parallel R_0)$	c) IP-1 (R ₀ L ₀)	d) $IP^{-1}(L_0 R_0)$		
6. The minimum number	r of cryptographic keys	s in 3DES required to ach	ieve a higher level of		
security than DES is:					
a) 1	b) 2	c) 3	d) 4		
7. Which is the largest dis	advantage of the asymmetric advantage and the asymmetric and the asymm	metric Encryption?	a) Complex and time-		
consuming. b) Pro	oblem of the transmis	sion of the Secret Key.	c) Less secur	e	
encryption function.		v			
8. In the DES algorithm th	e Round Input is 32 bi	ts, which is expanded to 4	48 bits via a) Scaling	of	
the existing bits b) Duplication of the existing bits c) addition of ones.					
Q3: True or False.			[12 points]		
1 7 1 1 1 1 1	to a la that floor	do the metricular with useles	us troffic		
 Eavesdropping is the ne Symmetric key cryptogr 			ss traine.		
3. Brute force attack can b		on to key distribution.			
4. The input block length i					
5. Symmetric key is also c					
6. All Stream ciphers are u					
7.RSA depends on a two-v		sy to go in both directions			
8. Public Key cryptography is limited to key exchange					

9. The number of tests required to break the 3DES algorithm are 2^{113}

12. Symmetric encryptions cannot be used for Digital signature.

public key scheme is used for messages encryption.

10. When used together, a secret key scheme is used for session keys encryption and a

11. In RSA, the values of e and d must be inverse multiplicative with respect to n.

a- Use the fast exponentiation algorithm to find the result of 11¹⁷ mod 4.

b- Encrypt "I love this course" with "Double Rail-Fence" with key = 2.(hint: encrypt twice with key =2)

c- How can we get the 48 bits of the key that are used as the cipher key if the original key is 64 bits?

d -What are the weakness and strengths of DES?

equ

a-In RSA, if we can easy factoring n, the security of the algorithm could be compromised.

b- Even though anonymity could be seen as the opposite of accountability, both are goals of security.

c- Two popular choices of the value e in RSA are e=3 and e=17.

d- In RSA, Φ (n)=(p-1)(q-1).

Q6: Critical Thinking.

[20 points]

d -

en

a- Assume DES with a key length of 56 bits is used for encryption, how much time is required for a brute-force attack to break the cipher if the machine is performing one DES decryption per microsecond?

points]	b- Explain the steps to perform the Meet-in-the-middle attack on double encryption DES (with equations).
d.	
s of security.	
	c- Explain how permutation and substitution is performed in Feistel Structure
naintal	
points] e is required cryption per	d -Explain "Swapping the result after round 16 makes DES decryption works in the same way as encryption". What if there is no swap?
	Page 5 of 6
age 4 of 6	© 2022 Dr. Sonia Hashish

العربة الربي عن عنى العاربة عنى المعربة العربة المعربة العربة المعربة العربة ال

University : Menoufia

Faculty : Electronic Engineering

Department : Computer Science&Eng.

Academic level: 4th Year

Course Name : Distributed Systems

Course Code : : CSE 468

Date : 5/01/2023
Time : 3 Hours

No. of pages: 2

Full Mark : 70 Marks
Exam : Final Exam
Examiner : Assoc. Prof: Nirmeen

A. El-Bahnasawy

Answer the following questions:

Question No. 1:

(30 Marks)

- a) What are the four benefits of using cloud computing?
- b) Explain different models for deployment in cloud computing?
- c) State the difference between allocation problem and scheduling problem.
- d) Give only three IoT ENVIRONMENTAL MONITORING applications.
- e) State the Fog Computing Architecture?
- f) Give a block diagram explains How IoT model works

Question No 2:

(20 Marks) . ·

a) Give the Gantt chart of a schedule for the sample task graph of Figure 1 on three homogeneous processors. Calculate speedup and efficiency parameters.

Fig. 1

b) Program for x = a * 7 + (a * 5 + 2) As a DAG and get Gantt chart onto 2 processors. Take unit of time is unity and no communication cost.

Question No 3:

(10 Marks)

State is the main concept of the following topics:

1. First Come First Serve algorithm.

- 2. Max-min algorithm.
- 3. Virtualization.
- 4. Challenges of big data in cloud computing.
- 5. IoT Disadvantages.

Question No 4:

Choose the correct answer:

(10 Marks)

- 1. Tasks carry out independently. This refers to (concurrency no global clock)?
- 2. Interfaces should allow components to be added or replaced. (Openness scalability)?
- 3. Protection against disclosure to unauthorized individual. (Confidentiality integrity)?
- 4. Enables local and remote resources to be accessed using identical operations. (Concurrency transparency Access transparency)?
- 5. It is closer proximity to small end users, its wider consumer reach, and better mobility. Refers to (Edge computing Fog computing)?
- 6. Communication delay between two tasks allocated to the same processors is (negligible idle time)?
- 7. Systems enhanced data collection (IoT Foggy)?
- 8. The extension or lowering of cloud computing capabilities to the bottom/edge of the network in order to provide faster ICT (communication, storage, software, etc.) services to the lower end users.(edge computing fog computing)?
- 9. Is being one of the characteristic provide the concept of commissioning and decommissioning of large amount of resource capacity dynamically. (Scalability elasticity)?
- 10. Service provides cloud applications which are used by the user directly without installing anything on the system. The application remains on the cloud and it can be saved and edited in there only. ((SaaS) (IaaS))?

Best Wishes