Course Specification of histology for Master of Hepatobiliary surgery

A- Administrative Information
Course Title: Histology for master of surgery
Code: SURG H 712
Department giving the course: histology department
Program(s) on which the course is given: Master of Hepatobiliary surgery
Department(s) offering the Program: Hepatobiliary Surgery department
Academic year/level: 1st part
Date of approval by Departmental and NLI Council: 2011

B- Professional Information
1 – Overall aims of course:
To provide students with knowledge concerning the basic histological structure and ultrastructure of the eukaryotic cell with correlation to biological cellular activities, and basis of cytogenetics and to teach the student the normal histological structure of different tissues of human body in addition to its systems with functional and clinical correlation whenever possible. And to enable students to know the histological structure of various organs and systems of the body.

a- Knowledge and understanding:
By the end of the course, student should be able to:
a1-Define and describe the structure and functions of the cytoplasmic components.
a2-Explain the process of cell division and identify the activities that control the transition from each phase of the cell cycle to the other.
a3-Know the structural characteristics of the four basic tissue types.
a4-Describe the functional capabilities of each tissue type and relate them to the structure.
a5-Describe and compare between different blood elements and their development.
a6-Define and discuss the basic histological structure of some systems (vascular, lymphatic & nervous).
a7-Describe the normal histological structure of various body systems (digestive, endocrine, urinary, male & female reproductive).
a8-Distinguish structural features of organs, regions and cell types present in' each system and relate the structural variations to differences in organ function.
a9-Correlate between the blood supply of some organs and their structure and specialized functions.

b-intellectual skills: By the end of this course, students should be able to
B1-Evaluate the structural features and different tissue elements of each organ.
B2-Draw and label the structures of different organs.
b3 Recognize and differentiate between types of cells and tissues in histological slides.

c-professional and practical skills: By the end of the course, student should be able to
c1 Select appropriate methods to reveal specific microscopic features of cells and tissues.
c2 construct structures that could be present in a cell from its function.
c3 Relate the composition of each tissue type to its specific functions.
c4 Predict the intracellular or tissue components likely to be involved in a functional deficit.

d-general and transferable skills: By the end of thin course, students should be able to
d1 Appreciate the importance of lifelong learning.
d2 Use the sources of biomedical information available to remain current with advances in knowledge and practice.
d3 Communicate actively with his colleagues as well as the employees and staff members.

3- COURSE CONTENT
Detailed topics of the course:

2- Cytology
- Cell membrane (plasma membrane) and glycocalyx (LM & EM, Molecular structure, Functions, Endocytosis and Exocytosis; Receptors and signaling reception).
- Mitochondria (LM & EM, Membrane enzymes, Elementary particles, Mitochondrial DNA & RNA, Functions)
- Ribosomes (LM & EM, Free and attached, Polysomes, chemical composition, Functions)
- Endoplasmic reticulum (Rough & Smooth, LM & EM, Functions)
- Golgi apparatus (LM & EM, Functions)
- Lysosomes (LM, histochemical reactions & EM, Origin, Types and Fate, Functions)
- Centrioles, Cilia and Flagella
- Cytoplasmic inclusions (Stored food, pigments)
- Nucleus of interphase (Nuclear envelope, Chromatin, Nucleolus, Nuclear sap)
- The cell cycle (Interphase G1, S & G2 and mitosis)
- Cell division, Mitosis (Events, Mitotic chromosomes, Mitotic spindle, Phases) & meiosis
- Nucleic acids, DNA & RNA (Chemical composition, Structural differences, nucleotides & genes, codons & anticodons, protein synthesis, transcription, translation, replication & Types of RNA)
- Cell death (necrosis versus apoptosis)

2- Epithelium:
- General characteristics of epithelium & its types
- Types of simple epithelium (structure & sites)
- Transitional epithelium
- Structure & sites of stratified squamous & stratified columnar epithelium
- Glandular epithelium with reference to sites
- Neuro- and myo-epithelium with reference to sites
- General functions of epithelium
- Modifications of epithelial cells surfaces: Apical, basal & lateral modifications
- Basement membrane

3- Connective Tissue:
- General characteristics
- Cells of C.T. proper (LM, EM & functions)
- Fibers of C.T.
- Ground substance

Cartilage:
- Types of cartilage
- Histology of each type
- Sites of each type
- General functions

Bone:
- Types of bone with reference to sites
- Bone cells & their functions
- Histology of compact bone
- Histology of spongy bone
- Differences between cartilage & bone
- Ossification (intramembranous & intracartilagenous)

Blood & Hemopoiesis:
- Components of Blood
- Normal structure, size & number of erythrocytes, ultrastructure & functions
- Abnormalities in structure, size & number of RBCs
- Polycythemia & anaemia and their causes
- Types of WBCs & normal percentage of each
- Total RBCs count
- Total leucocytic count & its clinical importance
- Differential leucocytic count & its importance
- Types & structure of bone marrow
- Erythropoiesis
- Granulopoiesis
- Development of lymphocytes
- Development of monocytes
- Development of platelets

4 - Muscle Tissue:
- General histological characteristics and types of muscle tissue
- Types of skeletal muscle fibers
- Smooth muscle fibers (LM & EM)
- Cardiac muscle fibers (LM & EM)
- Conducting system of heart

5 - Nerve Tissue:
- Types (classification) of neurons & examples
- Histology of peripheral nerve fibers
- Structure of nerve trunk
- Spinal & autonomic ganglia
- Synapse
- Degeneration & Regeneration of nerve fibers
- Neuroglia (Definition, Classification & Sites)

6 - Vascular System:
- General structure of blood vessels & its significance
- Large, medium sized & small arteries
- Small, medium sized & large veins
- Types, sites & structure of Arteriovenous connections

7 - Lymphatic (Immune) System:
- Cells involved in the immune system & their functions
- Antigen presenting cells
- Primary & secondary immune response
- Cellular & Humoral immunity
- Lymph vessels & distribution of lymphoid tissue
- Structure of Lymph node & its immunological function
- Structure of Spleen & its function
- Differences between lymph node & spleen
- Blood supply of spleen & theories of circulation
- Structure of Tonsils
- Structure & functions of thymus
- Thymic barrier

8 - DIGESTIVE SYSTEM

ORAL CAVITY
- Lip
- Tongue & taste buds
- Teeth & gingiva
- Palate and Pharynx

ALIMENTARY TRACT
- Oesophagus
- Stomach & gastro-oesophageal junction
- Small intestine & pyloro-duodenal junction
- Large intestine, appendix & Anal canal

DIGESTIVE GLANDS
- Salivary glands
- Pancreas
- Liver & gall bladder

9- URINARY SYSTEM
- Kidney & blood supply of urineferous tubule
- Blood renal barrier
- Juxta-glomerular complex
- Ureter, Urinary bladder & Urethra

10 - ENDOCRINE SYSTEM
- Distribution of endocrine glands
- Pituitary gland
- Suprarenal gland
- Thyroid gland
- Parathyroid gland
- Pineal body
- General characteristics of diffuse neuro-endocrine cells, distribution & function

11 - MALE GENITAL SYSTEM
- Testis & blood-testis barrier
- Vasa efferentia. Epididymis, Vas deferens & spermatic cord
- Seminal vesicles, prostate & penis

12- FEMALE GENITAL SYSTEM
- Ovary
- Fallopian tube
- Uterus & menstrual cycle
- Placenta
- Vagina & mammary gland

<table>
<thead>
<tr>
<th>Topic</th>
<th>Theoretical hours</th>
<th>Laboratory/Practical</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytology</td>
<td>1</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Epithelium:</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Connective Tissue:</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Muscle Tissue:</td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Nerve Tissue:</td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Vascular System Lymphatic</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
(Immune) System:
<table>
<thead>
<tr>
<th>System</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGESTIVE SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URINARY SYSTEM</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ENDOCRINE SYSTEM</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MALE GENITAL SYSTEM</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FEMALE GENITAL SYSTEM</td>
<td>1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Total hours</td>
<td>11</td>
<td>9</td>
<td>20</td>
</tr>
</tbody>
</table>

4- Teaching and learning methods
4.1 Lectures: for acquisition of knowledge

5- Student assessment methods
5.1 final written and oral exams

Assessment schedule
One and half hours written paper +oral exam

Weighting of assessments
Final-term written examination 50%
Oral examination 25%
Total 100%

6- List of list of references:
6.1 Course note:
Department elementary books
6.2 Essential Books (Text Books)
6.3 Recommended Books
6.4 Web Sites:
www.yahoo.com
www.pubmed.com

7- Other Resources / Facilities required for teaching and learning to achieve the above ILOs
1-NLI Lecture halls
2-NLI library can be used for projects and textbooks
3-Audiovisual aids as: writing boards and over head projectors.

Course coordinator:
Name: Prof. Dr. Gamal ElBadawy Hagras
Signature
Head of the department of Histology: